1,156 research outputs found

    Scattering from Spatially Localized Chaotic and Disordered Systems

    Full text link
    A version of scattering theory that was developed many years ago to treat nuclear scattering processes, has provided a powerful tool to study universality in scattering processes involving open quantum systems with underlying classically chaotic dynamics. Recently, it has been used to make random matrix theory predictions concerning the statistical properties of scattering resonances in mesoscopic electron waveguides and electromagnetic waveguides. We provide a simple derivation of this scattering theory and we compare its predictions to those obtained from an exactly solvable scattering model; and we use it to study the scattering of a particle wave from a random potential. This method may prove useful in distinguishing the effects of chaos from the effects of disorder in real scattering processes.Comment: 24 pages, 11 figures typos added. Published in 'Foundation of physics' February issu

    Coherent Control of Trapped Bosons

    Full text link
    We investigate the quantum behavior of a mesoscopic two-boson system produced by number-squeezing ultracold gases of alkali metal atoms. The quantum Poincare maps of the wavefunctions are affected by chaos in those regions of the phase space where the classical dynamics produces features that are comparable to hbar. We also investigate the possibility for quantum control in the dynamics of excitations in these systems. Controlled excitations are mediated by pulsed signals that cause Stimulated Raman Adiabatic passage (STIRAP) from the ground state to a state of higher energy. The dynamics of this transition is affected by chaos caused by the pulses in certain regions of the phase space. A transition to chaos can thus provide a method of controlling STIRAP.Comment: 17 figures, Appended a paragraph on section 1 and explained details behind the hamiltonian on section
    corecore